16 июня 2022
Простое число – это число, которое делится нацело без остатка только на 1 и на самого себя. Также известно, что любое целое число, большее 1, является либо простым, либо может быть выражено как произведение простых чисел. Ряд простых чисел начинается с 2 и имеет следующий вид: 2, 3, 5, 7 и т.д.
Рассмотрим алгоритм поиска простых чисел, известный как «метод перебора делителей». Для этого давайте реализуем на Java метод getFirstPrimes(), который будет возвращать N первых простых чисел.
Все найденные простые числа будем складывать в список. Далее проверяем, что если у нас запросили хотя бы одно простое число, то сразу добавим 2, т.к. с него начинается последовательность. Далее в цикле начинаем проверять числа, сразу начиная с трёх. Также обратите внимание, что мы проверяем только нечётные числа (приращение +2), т.к. все чётные числа по определению делятся на 2.
Цикл выполняется до тех пор, пока в нашем результирующем списке не окажется ровно столько простых чисел, сколько у нас запросили. Саму проверку на «простоту» выполняем с помощью метода isPrime(), которому передаём текущее проверяемое число и уже накопленные нами на предыдущих итерациях числа.
Здесь мы сначала вызываем метод Math.sqrt(), ведь если проверяемое число состоит хотя бы из двух множителей, то ни одно из них не может превышать двоичный корень.
Затем в цикле проходим по всем уже найденным простым числам и по очереди пытаемся делить на них текущее число. Если число делится на простое число без остатка – значит, оно составное. Проверку выполняем до тех пор, пока простые числа меньше корня из проверяемого числа.
Можно выполнить небольшую оптимизацию, отказавшись от вычисления квадратного корня и операций над типом double. Вместо этого будем возводить каждое уже найденное простое число в квадрат и проверять, не превысило ли это произведение потенциально простое число. Если превысило, значит, перед нами новое простое число:
Рассмотренный алгоритм работает довольно быстро. За пару секунд он находит 500 000 простых чисел.
Оптимизации, которые мы применили:
Данный алгоритм хорошо подходит в том случае, если вам нужно ровно N первых простых чисел. Если же вы ищете все простые числа в некотором диапазоне, то лучше использовать Решето Эратосфена для поиска простых чисел – он будет работать гораздо быстрее.
Kotlin, Java, Spring, Spring Boot, Spring Data, SQL, PostgreSQL, Oracle, Linux, Hibernate, Collections, Stream API, многопоточность, файлы, Nginx, Apache, maven, gradle, JUnit, YouTube, новости, руководство, ООП, алгоритмы, головоломки, rest, GraphQL, Excel, XML, json, yaml.
21.01.2024 12:11 Czech Entropy PRNG
Решето Аткина быстрее
28.01.2024 07:53 1024 bit
Попробую написать и потестировать для больших чисел в 1024 bit. "Готовых" простых чисел для http://shmeleff.com/CzechEntropy.apk не нашел. Похоже их никто не хочет публиковать :-))